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Steady solutions of a system of Euler 's  equations when there are intrinsic force interactions of electrical and gravitational type 
are analysed. Particular at tention is devoted to the class of soliton "particle-like" solutions with concentrated charge and mass. 
Periodic steady solutions for the case when the intrinsic gravitational field has non-zero density at infinity is also considered. 
© 1999 Elsevier Science Ltd. All rights reserved. 

Soliton solutions of the hydrodynamic equations have an extensive bibliography. It is sufficient here to 
mention the monographs and surveys on gravitational waves on the surface of a liquid [1-3] and ion- 
acoustic solitons in hydrodynamic models of a plasma [1, 2, 4]. The classical soliton solutions [5, 6] were 
obtained as exact continuous solutions of the non-linear wave or evolution equations. Particle-like 
solutions, which differ from the classical solutions, were obtained in [7, 8] as the steady solutions of 
equations of the two-fluid model of a cold plasma. 

1. THE INITIAL EQUATIONS 

We will write the initial equations of motion of an ideal fluid (Euler's equations) taking into account 
intrinsic internal interactions of the particles of the medium, which will be taken to be electrical 
interaction of charged particles or gravitational interaction of neutral particles. Assuming that the 
motions of the fluid occur adiabatically or isothermally, we shall not use the equation of conservation 
of energy. 

The equations of continuity and conservation of momentum have the form 

~_~n+div(nV)=0 ' 3_~V+(vv)v=_ 1 VP+F (1.1) 
~t ot  n m  

Here m is the mass of the particles of the medium, n, P and V are the concentration, pressure and velocity 
of the medium respectively, and F is a function characterizing the force field associated with the particles 
of the medium. 

We will formulate the problem for the two cases mentioned. A typical example of the first case is 
the equations of motion of an ionic gas in the hydrodynamic "two-fluid" model of a plasma, where the 
interaction between the ion and electron components of the plasma is weak [1, 4, 9]. For electrical 
interaction 

F = -Vcpl (1.2) 

where ¢PI is the electrical field potential, determined from Poisson's equation 

e 2 

Aq~ I = 4 n - - ( n  e - n) (1.3) 
m 

Here e is the electron charge and n e is the electron density. 
System (1.1)-(1.3) is closed by the equation of state of an ion gas, for example, in the form 

P = n T  (1.4) 

where T is the constant temperature of the ion component of the plasma, and by specifying the electron 
density distribution, for example, the Boltzmann's distribution 
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n, = no exp(e~0, /T~) (1.5) 

where Te is the constant temperature of the electron component of the plasma and no is the unperturbed 
particle density at infinity. 

At low perturbation amplitudes, system (1.1)-(1.5) yields the Boussinesq equations [1]. Further 
lineafization of these equations relative to "simple" wave solutions leads to the Korteweg-de Vries 
equation, the solutions of which are isolated waves--solitons. For finite perturbation amplitudes, we 
can use the method described in [10] to make a fuller study of the structure of steady solutions of system 
(1.1)-(1.5) in the one-dimensional case. In particular, "subsonic" soliton solutions with charge and mass 
concentrated at the centre of the soliton were obtained in [7, 8]. 

The soliton solutions of system (1.1)-(1.5) are studied in detail below. The analysis will be clearer if 
instead of using (1.5) we assume that ne = no. This is valid, first, in regions where the magnitude of the 
potential (Pl is close to zero and, second, in regions where (PI is negative and ne '~ n. The right-hand 
side of Poisson's equation (1.3) is then a weak function of ne and we can put n, = no without affecting 
the structure of the resulting steady solutions. 

For the motion of neutral gravitating particles, we put 

F = V92 (1.6) 

where ~02 is the gravitational field potential given by Poisson's equation 

A92 = 4nGm(no - n) (1.7) 

(G is the gravitational constant). The form of the fight-hand side of Eq. (1.7) enables us to take into 
account the "repulsive" force [11] which operates at large cosmic distances and partially neutralizes 
the force of gravitational attraction. 

The system of equations (1.1), (1.6) and (1.7) is also closed. 
Below we will analyse the steady solutions of the one-dimensional system of equations which follow 

from (1.1) and (1.2) 

~n ~nu 3u ~u c 2 ~n 
-~'+-'~--x =0 '  - ~ ' + u ~ x =  n ~x +F (1.8) 

where u is the velocity component of the medium projected onto the x axis and c 2 = T/m is the charac- 
teristic velocity of sound (the velocity of propagation of small perturbations). 

System (1.8) is completed by the following relations: 
for a medium of charged particles with electrostatic interaction (with the above assumptions) 

F= -~{Pl I~x, Atpl = b2(l - n )  (1.9) 

for a medium of neutral gravitating particles 

F = ~3~2 I~x, A~2 = b2(1-n) (1.10) 

All the quantities in (1.8)-(1.10) and below are assumed to be dimensionless, the ion density n being 
taken relative to its unperturbed value no, the velocities u and c relative to the characteristic value 
u0, the coordinate x relative to x0, the time t relative to to and the potentials {p and ~2 relative to 
tp 0 = u 2. Then the positive constants b 1 and b2 are defined as follows: 

4~,e2no 4xGmno (1.11) 
b2= mu~ ' b~= u~ 

We will now consider the structure of the steady solutions of the system of equations (1.8), (1.9) for 
a medium of charged particles with an intrinsic electrostatic field and system (1.8), (1.10) for a medium 
of neutral gravitating particles. 

We will consider the steady solutions of the initial equations in the system of coordinates (X, t), where 
t is the same as before, X = x + Ut and U is the constant velocity of motion of the new system of 
coordinates relative to the old. Changing to variables (X, t) and integrating the equation of continuity 
with respect to x from (1.8) once, we obtain 

n(u+U)= A, (u+U)~x =-C2 d lnn+ (1.12) 
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The constant of integrationA will be determined from the boundary conditions as X--> __.oo in each 
specific case. From the second equation of system (1.12) we obtain the relation 

(u + U) 2 I- c 2 In n + S FdX = const (1.13) 
2 

which could be called the analogue of the Bernoulli integral. 

2. THE S T R U C T U R E  OF STEADY S O L U T I O N S  FOR 
A M E D I U M  OF C H A R G E D  PARTICLES 

Consider the steady solutions of system (1.9), (1.12) which satisfy the boundary conditions n -~ 
n o = 1, u ---> 0 as X--> __.oo. Then the constantA in the first equation of system (1.12) is equal to U. We 
differentiate the second equation of (1.12) with respect to X and eliminate the density n = U/(u + U) 
and potential tp 1 from the resulting relation using (1.9). Taking u = u + U as the independent variable 
andp  = du / dX as the dependent variable, we obtain the first-order equation 

dp = -  p2(v 2 +c2)+b~(v -U)v  (2.1) 
d v  (v 2 _ c2 ) p v  

This yields, in particular, a linear equation for the function w(u) = pEOj ). 
The pattern of integral curves of Eq. (2.1) in the phase plane (~,p) is symmetric about the horizontal 

axis p = 0 and contains two singular points on that axis, with coordinates 

v I =0,  Pl =0;  v 2 =U,p  2 = 0  (2.2) 

The first singular point is a degenerate node. The integral curves touch the vertical axis at that point 
when u ~> 0. Near that point, they have the asymptotic formula 

p2 = 2b_~_~ (Cv 2 +v 2 In Iv I+Uv ) 
c 

where C is a constant (a parameter which defines the corresponding integral curve near the singular point). 
2 <  2 r'2 2"1 The second singular point is a saddle if U ~ c and a centre if U > c .  In the former case the directions 

of approach of the separatrix towards that point are given by the angular coefficients 

kl. 2 = -I-bl 4 c  2 - U 2 

In the physical plane, motion along the separatrix from the second singular point corresponds to motion 
from infinity (with respect toX). Near the second singular point, we have the following asymptotic relation 
(when U 2 < c 2) 

p2 = b2(v _ U)2 i ( c  2 -- U 2) 

Two other singular points can exist in the phase plan with coordinates 

v 3.4 = c, P3.4 = -+bl ~/(U - c)/(2c) (2.3) 

When U > c, these are saddle singular points. When U < c, their ordinates are imaginary. Motion 
towards them occurs along the vertical separatrix and motion away from them occurs along the 
separatrices with angular coefficients 

k3. 4 = :l:[b I 1(6c3)],~12c I(U - c) 

In the physical plane, the latter corresponds to motion from infinity. Near the third and fourth singular 
points, we have the asymptotic formula 

p = b 1 4 ( O  - c ) / ( 2 c )  + [b  I / ( 6 c  3)]~/2c/(U - c ) ( c  - v  ) 

When U = c the second, third and fourth singular points coincide. Motion towards this singular point 
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is along the vertical separatrix l) = c and motion away from it is along the separatrix 

p2  = _[bl  1(3c)](v - c) 

The last singular point with negative abscissa l) = -c  can only be considered when U < 0, which yields 
the same situation as before. 

Figure 1 shows the structure of the solutions in the phase plane for c = 1, bl = 9 and various values 
of U: U = 0.5 (a), U = 1 (b) and U = 1.5 (c). The bold curves with arrows are separatrices passing 
through the singular points. 

The solution in the form of a subsonic particle-like soliton (the separatrix in Fig. la joining the first 
and second singular points) is similar in character to the "subsonic" solitons considered in detail in [7, 
8]. Note that a change of the coordinate X from +oo to -oo corresponds to moving along the separatrix 
from the second singular point in the direction shown by the arrows through the first nodal singular 
point where X = 0 to the second singular point (on the bottom of the phase plane). For the soliton 
solution under  consideration, as we approach the first singular point where the velocity ~ tends to zero 
(X --4 0) the ion density n tends to infinity, the value of the potential to ~ - ~ ,  and the electric field 
strength ends to -~o from the right and to + ~  from the left as X--+ 0. This means that the mathematical 
model must have a negative concentrated charge on the surface X = 0. The solid curves in Fig. 2 
represent u(X), n(X) and t0(X) for the given soliton particle-like solution. The solution can be interpreted 
both as a particle at the point X = 0 and as the associated wave (in the region where the value of u is 
significantly different from zero). 

Up to the velocity of sound, where U = c, the soliton is similar in character (Fig. lb). The 
corresponding curves for u(X), n(X) and to(X) for an acoustic particle-like soliton ar.e represented by 
the dashed curves in Fig. 2. 

The soliton solutions for which the ion density n --~ ~ as X --~ 0 can be explained as follows. As n ---) 
o o  the initial formulation of the problem (for the model of a rarefield plasma) is no longer valid, so that 
a small neighbourhood of the point X = 0 must be removed. In addition, a solution with an infinite 
negative charge density on the surface X = 0 is physically impossible. In order to be able to discuss the 
solutions as a whole, a layer which is permeable to ions, through which an ion flux n~) = A occurs (by 
virtue of the first relation of system (1.12)) must be introduced into the model in a small neighbourhood 
of the surface X = 0. This layer will simultaneously act as a carrier of finite negative charge. 

This very artificial formation must be used in the given one-dimensional case. In more complicated, 
two- or three-dimensional cases, one could perhaps construct models which are more acceptable from 
a physical point of view (such as small negatively charged neighbourhoods of points which are "scanned" 
by the flow of positive ions). However, an analysis of two- and three-dimensional solutions is beyond 
the scope of this paper (it would require numerical integration o f  initial equations). The assumption 
we have made that the electron density is uniform for X ~ 0 (instead of conforming to a Boltzmann 
distribution), while not affecting the form of the solutions [7, 8], does simplify the analysis considerably. 

We will now describe the solution corresponding to supersonic velocity U = 1.5 (Fig. lc). The 
supersonic stream from infinity, corresponding to the second singular point, which is a centre in this 
case, flows to the soliton-particle forming a leading shock wave. At the shock, the Rankine-Hugoniot  
relations for a direct shock are satisfied (in particular, in this case the velocity u behind the shock is 
defined as u = 1 / U  ~- 0.667; thus ~ = u - U = 0.833). The motion after that corresponds to the integral 
curve shown by the small crosses, up to the first singular point where there is a soliton centre which, 
again, we place at the origin of coordinates X = 0. Then from the first singular point we move along 
the separatrix to the third singular point. We can reach the second singular point from the third singular 
point in this case only by using a centred-wave solution which varies with time, and this cannot be 
represented by an integral curve in the phase plane. An example of the distribution u(X) corresponding 
to a supersonic soliton-particle is represented by the dash-dot  curve in Fig. 2(a) (the dashed curve here 
corresponds to the sonic case U = 1). 

The solution obtained for supersonic flow is not, on the whole, steady and is essentially similar to 
the one-dimensional solution of a reversed isolated wave in ordinary ideal gas dynamics, when a centred 
rarefaction wave overtakes the shock wave and gradually reduces its intensity. In our case the rarefaction 
wave gradually overtakes the soliton and reduces its intensity (total mass). The leading part of the soliton 
does not change and can be described by the steady solution given above. 

It is easy to modify the analysis of the structure of steady solutions for the case of adiabatic motion 
of the medium, replacing the isothermal equation of state (1.4) by the adiabatic equation in the form 

P / P o = ( n / n o )  ~' (2.4) 
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where × is the adiabatic index. In this case, instead of relation (2.1), we easily obtain 

dp = _ p2 (×2 c2U,,-I +v ,,+n ) + b ~  "(v - U) 

dv  (v x+l _ xc2UX-i )pv  
(2.5) 

The field of the integral curves given by relation (2.5) has two singular points with coordinates (2.2). 
Instead of the singular points with coordinates (2.3), we obtain singular points with coordinates 

= (xc2U~-I)1/(x+l) / £]4 U ~,4 (U -/3 3.4 )/( 2xU~t-1 ) z/3.4 P3,4 = +-[bl 

These singular points are similar to those in the isothermal case described above. 
To end this section, we note that it is possible to use the analysis in the case where the expression 

for F in the equation of motion contains a term proportional to V, that is, instead of (1.2) we have 

F = - V q ~  - v ( V  - V, , )  

This term allows for the interaction of charged particles with neutral particles, the mean hydrodynamic 
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velocity of which is Vn and v is the collision frequency of charged particles and neutral particles. In this 
case relation (2.1) will also contain the term vp~ 2 in the numerator on the right-hand side. Some of 
the singular points will change in character. 

3. T H E  S T R U C T U R E  O F  T H E  S T E A D Y  S O L U T I O N S  F O R  
A G A S  O F  N E U T R A L  G R A V I T A T I N G  P A R T I C L E S  

We will now consider the steady solutions of system (1.10), (1.12). The constantA, which represents 
the mass flow of gas, will be assumed to be non-zero. Proceeding as in the previous section, we arrive 
at a first-order equation similar to (2.1) but with b 2 replaced by -b22 and U replaced byA. The singular 
points are similar to (2.2), (2.3). 

The first singular point (~1 = 0, Pl = 0) is a degenerate node. The integral curves for a9 ~< 0 
move to that point, touching the vertical axis. The second singular point (~2 = A, P2 = 0) is a 
centre when A 2 < c 2 and a saddle when A 2 > c 2. In the second case the angular coefficients of the 
characteristic directions are given by the formulae 

kl, 2 = +b 2 I ~ A  2 - c 2 

Near this singular point, we have the following asymptotic formulae: 
forA 2 < c z 

p2 = Cexp[-C~(u - A ) ] - C 2 [ C I ( u  - A ) - I ]  

C = eonst, C1 = (A 2 + c2)/(2A(A 2 - c2)) 

C2 = (b2A2(A 2 -~'2))/( A2 + c2) 

f o r A  2 > c 2 

b 2 
p2 = ~ (u - A) 2 

The third and fourth singular points (~3, 4 = c, P3, 4 = +-~-b2 x~(( c - A ) / ( 2 c ) ) )  are saddles for A < c or 
else have imaginary coordinates. Motion towards the singular points is along the vertical separatrix 

= c. Motion away from them is along the separatrix with angular coefficient 

k3. 4 = +[b 2 1(6c 3)]~(2c) / (c  - A)  

We will not consider the last singular point with negative abscissa ~ -- --c 
Figure 3 shows the pattern of integral curves in the phase plane (v, p) for a low gas flow rate A = 

10 -4 . Motion along one of the closed integral curves around the second singular point of centre type 
gives a solution in the form of a period cnoidal wave. As an example, Fig. 4 shows the distribution of 
the density n along the coordinate x (for U = 0). The distributions of the velocity u and potential ~0 are 
similar. The value of the parameter A can be as small as required, allowing us to assume that when 
A = 0 there is a periodic solution with concentrated masses on surfaces passing through the peak points 
of the cnoidal wave. 
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4. T H E  S T R U C T U R E  OF T H E  STEADY S O L U T I O N S  IN T H E  CASE OF 
S P H E R I C A L  S Y M M E T R Y  

Spherically symmetric steady solutions of the equations of a medium of charged particles with Coulomb 
interaction describe the screening of the point charge by particles of the medium with opposite-sign 
charges and are fairly familiar. In particular, Poisson's equations for the case of an isothermal and 
adiabatic plasma are given in [8]. Note also the paper [12], which gives some approximate and numerical 
solutions of the screening problem for the one-dimensional case. 

We will make a detailed analysis of the spherically symmetric flows of a medium of neutral gravitating 
particles. The steady solutions (for the case U = 0) are described by the system of equation derived 
from (1.1) and (1.10) 

du c 2 dn d92 
u - -  = ~ (4.1) 

dr n dr dr 

l d ( r  2 d ~ 2 ) = b 2 2 ( l _ n )  
r 2 dr ~. dr  ) 

where r is the radial coordinate. 
Eliminating the density and potential from system (4.1), we obtain the equation 

dp p2rZ(u2 + c 2) + 2pru(u 2 - c 2) - 2c2u 2 - b2u(r2u - A) (4.2) 
dr = (u 2 - c 2)ur 2 

where p = du/dr. 
We know that when there is a mass source at the centre of symmetry, a steady solution can exist outside 

a sphere of a certain radius rmi.- We integrated Eq. (4.2) by the Runge-Kutta method, starting from a 
value of the coordinate r = r0 where the boundary values for x) and p were assigned, Different values 
o f t  0 and the boundary parameters correspond to different flows with the same gas flow rate but possible 
different total parameters. 
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Figure 5 shows the distributions of the particle velocity and density for A = 0 for the boundary 
parameters r0 = 1, u = 0.5 andp = 0. 

5. C O N C L U S I O N  

The existence of steady soliton solutions with charge and mass concentrated at their centre has been 
demonstrated only in the case of a one-dimensional hydrodynamic model of a medium of charged 
particles with an intrinsic Coulomb-type force field. The solutions exist over the entire possible range 
of velocities of motion of the solitons (from sub- to supersonic velocities). In the supersonic range, a 
leading shock wave arises ahead of the soliton. In the given hydrodynamic formulation, if there is an 
intrinsic field of gravitating particles, periodic solutions of cnoidal wave type are obtained. The analysis 
demonstrates clearly which terms of the initial equations are responsible for the appearance of singular 
points in the phase plane and the realization of the given solutions. In subsonic cases, these solutions 
are symmetric (or periodic), due to the fact that the effects of non-linearity are balanced by effects 
associated with the existence of intrinsic force fields. 
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